|
|
مطالعه آزمایشگاهی مقاومت برشی معادل ماسه سست مسلح شده با ستون سنگی
|
|
|
|
|
نویسنده
|
اصلانی مجید ,نظری افشار جواد ,گنجیان نوید
|
منبع
|
زمين شناسي مهندسي - 1398 - دوره : 13 - شماره : 3 - صفحه:365 -394
|
چکیده
|
ستون سنگی یکی از روشهای متداول بهینهسازی زمین است. در بارۀ رفتار ستونهای سنگی تحت بارهای قائم تحقیقات متعددی انجام شده است لیکن بررسیهای محدودی در بارۀ مقاومت برشی خاکهای مسلح شده با ستون سنگی انجام شده است که اغلب پژوهشهای انجام شده بهصورت تحلیلی یا عددی است. در این مقاله به بحث و بررسی آزمایشهای انجام شده در خصوص مقاومت برشی ستونهای سنگی در بستر ماسهای سست مسلح شده با ستون سنگی پرداختیم. آزمایشها در دستگاه برش مستقیم با جعبهبرش به ابعاد 305 times;305 و عمق 4/152 میلیمتر در سه تنش قائم شامل 55 و 75 و 100 کیلو پاسکال و چهار نسبت ناحیۀ اصلاح شده برابر با 4/8 و 12 و 4/16 و 25 درصد و سه نوع آرایش قرارگیری ستون سنگی (آرایش منفرد مربعی، مثلثی) بررسی شده است. نتایج بیانگر بهبود رفتار و سختی ترکیب خاکستون سنگی و افزایش مقاومت برشی بستر ماسهای در حضور ستون سنگی میباشد. نتایج حاصل بیانگر تاثیر آرایش قرارگیری ستونهای سنگی در افزایش مقاومت برشی است. بیشترین افزایش مقاومت برشی و افزایش سختی مربوط به آرایش مربع و کمترین آن مربوط به آرایش منفرد است. در ادامۀ مقاله به بررسی و مقایسه مقاومت برشی معادل و پارامترهای مقاومت برشی معادل بهدستآمده از نتایج آزمایش و روابط تحلیلی پرداخته شده است. نتایج بیانگر آن است که مقاومت برشی و پارامترهای مقاومت برشی معادل حاصل از نتایج آزمایشها بیشتر از مقادیر حاصل از روابط تحلیلی است. بدینمنظور یک ضریب اصلاحی بهمنظور ارتباط بین نتایج حاصل از آزمایشها و روابط تحلیلی ارائه شده است.
|
کلیدواژه
|
ستون سنگی، مقاومت برشی معادل، ماسه سست، برش مستقیم.
|
آدرس
|
دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران, گروه مهندسی عمران, ایران, دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران, گروه مهندسی عمران, ایران, دانشگاه آزاد اسلامی واحد شهر قدس, گروه مهندسی عمران, ایران
|
|
|
|
|
|
|
|
|
|
|
Experimental Investigation of Equivalent Shear Strength of Loose Sand Reinforced with Stone Column
|
|
|
Authors
|
Aslani Majid ,Nazariafsha Javad ,Ganjian Navid
|
Abstract
|
Ig the experiments, and a Linear Variable Differential Transformer (LVDT) was used to measure horizontal displacement. All achieved data from the experiments including data on vertical forces, shear forces and horizontal displacements were collected and recorded using a data logger, and an especial software was used to transfer data between the computer and the direct shear device. All specimens were sheared under a horizontal displacement rate of 1 mm/min.Testing ProgramExperiments were performed on single stone columns and group stone columns arranged in square and triangular patterns. The selected area replacement ratios were 8.4, 12, 16.4, and 25% for single stone columns, and 8.4, 12 and 16.4% for square and triangular stone column arrangements. To eliminate boundary effects, the distance between stone columns and the inner walls of the shear box was kept as high as 42.5 mm. In total, 12 direct shear tests were carried out, including 2 tests on loose sand bed material and stone column material, and 10 tests on stone columns with different arrangements. From the tests performed on group stone columns, 4 tests were performed on single stone columns, 3 tests on stone columns with square arrangement and 3 tests on stone columns with triangular arrangement. Hollow pipes with wall thickness of 2 mm and inner diameters equal to stone column diameters were used to construct stone columns. To prepare the specimens, first, the hollow pipes were installed in the shear box according to the desired arrangement. Then, bed material with unit weight of 16.5 kN/m3 was placed and compacted in the box in 5 layers, each 3 cm thick. Stone material was uniformly compacted to construct stone columns with uniform unit weight. The compaction energy was 67 kJ/m3 in all tests.Results and discussionIn this paper, the behavior of stone columns under shear loading was experimentally investigated in large direct shear device by performing tests with different area replacement ratios (8.4, 12, 16.4, and 25%), different stone column installation arrangements (single, square and triangular), and different normal stresses (55, 75 and 100 kPa). The key findings of this study are as follows:1. Shear strength increases with increase of area replacement ratio due to the higher strength of combined soilstone column system, and due to the increase of stone column area effective in shear plane. The amount of shear strength increase with area replacement ratio is low for ratios lower than 15%. However, this amount is higher for area replacement ratios higher than 15%.2. For stone columns with equal area replacement ratios, higher shear strength was mobilized in stone columns with square and triangular installation arrangements compared to single stone columns. Among the installation patterns investigated in this study, stone columns with square arrangement experienced the highest increase in shear strength value, while single stone columns experienced the lowest. One of the reasons of shear strength increase in square and triangular patterns is the increase of confining pressure applied by stone columns to the soil between them. Another reason is the increase the total lateral surface by changing the column arrangement from single column to square and triangular patterns. This increased lateral surface increases the lateral force imposed on the stone columns, resulting in higher shear strength mobilization of stone material.3. The slope increase of shear strengthhorizontal displacement curves shows that soilstone column system has higher stiffness than loose sand bed, and this stiffness varies with area replacement ratio and installation pattern. The maximum stiffness values refer to stone columns installed in square pattern and the minimum values refer to single stone columns. In general, stone column installation pattern has an effective role in increasing stiffness.4. Results show that shear strength parameters increase in soil reinforced with stone column. The maximum increase in internal friction angle refers to stone columns with square pattern and the minimum increase refers to single stone columns.5. The equivalent shear strength values measured from experiments are higher than those obtained from analytical relationships. Accordingly, it is conservative to use analytical relationships to calculate shear strength parameters. It is worthy to mention that these relationships assume that the value of stress concentration ratio is equal to 1. Results from this study indicate that the value of stress concentration ratio should be accurately calculated and used in the relationships.6. As discrepancy was observed between values measured from experiments and those obtained from analytical relationships, corrective coefficients were calculated to modify analytical relationships. These coefficients were computed and presented based on stone column installation pattern, area replacement ratio and the applied normal stress values../files/site1/files/133/2Extended_Abstracts.pdf
|
Keywords
|
Stone Column ,Equivalent Shear Strength ,Loose Sand ,Direct Shear Test
|
|
|
|
|
|
|
|
|
|
|