>
Fa   |   Ar   |   En
   مطالعه عددی اثر مولفه های سرعت جریان و زبری سیلابدشت ها بر عملکرد هیدرولیکی جریان در مقاطع مرکب با سیلابدشت های همگرا  
   
نویسنده مردوخ پور علیرضا ,صبح خیز فومنی رامتین ,قاسمی بیورزنی حمیدرضا
منبع هيدروليك - 1401 - دوره : 17 - شماره : 3 - صفحه:65 -84
چکیده    شبیه سازی جریان در مقاطع مرکب یا رودخانه های طبیعی از مهمترین مسائلی است که برای کاهش خطرات سیلاب و همچنین مدیریت دشت های سیلابی به آن پرداخته می شود. از طرفی مطالعات حاضر نشان می دهد تحقیقات جامع عددی بر روی مقاطع مرکب انجام نشده است لذا نوآوری تحقیق حاضر در مورد مطالعه عددی اثرات پارامتر هایی نظیر زبری بر وضعیت و عملکرد هیدرولیک جریان در مقاطع مرکب غیرمنشوری می باشد .در تحقیق حاضر، الگوی جریان در آبراهه هایی با مقاطع مرکب منشوری و غیر منشوری با استفاده از نرم افزار flow 3d که قابلیت تجزیه و تحلیل سه بعدی جریان را دارد بررسی شد. به ازای سه زبری نسبی مختلف (1، 2 و 2.74) و نیز سه عمق نسبی (0.15، 0.25 و 0.35) و زاویه های واگرایی5.7 و 11.3 درجه، تغییرات مولفه طولی سرعت، توزیع سرعت متوسط عمقی، توزیع تنش برشی مرزی و نیز دبی انتقال یافته توسط سیلابدشت ها مورد بررسی قرار گرفت. نتایج نشان می دهد که با افزایش عرض سیلابدشت ها در طول کانال از مقدار سرعت کاسته می شود. همچنین بررسی اثر زبری بر روی الگوی جریان نشان داد که بطور کلی با زبر شدن جدار، مقدار سرعت در تمامی مقاطع مورد بررسی کاهش یافته است. از طرفی الگوی جریان در محل برخورد کانال اصلی و سیلابدشت تاثیر بیشتری از زبر شدن جدار می پذیرد. همچنین می توان اشاره کرد که با افزایش عمق نسبی و یا کاهش زبری نسبی، گرادیان سرعت میان کانال اصلی و سیلابدشتها کاهش می یابد.
کلیدواژه بررسی عددی، سرعت عمقی، زبری نسبی، سیلابدشت، نرم افزار flow-3d
آدرس دانشگاه آزاد اسلامی واحد لاهیجان, گروه عمران, ایران, دانشگاه قم, گروه عمران, ایران, دانشگاه آزاد اسلامی واحد لاهیجان, گروه عمران, ایران
پست الکترونیکی hamidreza.ghasemi@gmail.com
 
   Numerical study of the effect of flow velocity and flood roughness components on hydraulic flow performance in composite sections with converging floodplains  
   
Authors Mardookhpour Alireza ,Sobhkhiz Foumani Ramtin ,Ghasemi Bivarzani Hamidreza
Abstract    Intrpduction: The need to control floods and their dangers is not hidden from anyone. In addition, a wide range of economic, social and environmental issues are affected by this phenomenon. The first step in the design and optimal management of flood control methods is the correct identification of river behavior during floods. In most river engineering projects such as flood routing, determining the bed and river area, etc., calculating the average values of hydraulic parameters of the river section is sufficient. Today, the use of numerical and analytical methods in the study of fluid environment have grown and developed. Due to the production of reliable results, they have been able to be a good alternative to physical models. Today, with the rapid development of numerical models and increasing the speed of computer calculations, the use of 3D numerical models is preferred and also due to the fact that measuring the velocity distribution and shear stress in rivers is very time consuming and expensive, the results of 3D numerical models It will be valuable. On the other hand, the present studies show that comprehensive numerical research using FLOW3D model has not been performed on composite sections, so a suitable ground for research is provided. Therefore, the innovation of the present study is the numerical study of the effects of parameters such as roughness on the status and hydraulic performance of the flow in nonprismatic composite sections, which are accompanied by divergent and convergent floodplains, which have received less attention numerically.Methodology: Younesi (2013) research has been used to validate the results of numerical simulation. In these experiments, first the hydraulic flow in composite prismatic and nonprismatic sections with fixed bed was examined and then, while maintaining the conditions, sediment transfer experiments were performed in prismatic and nonprismatic mode. The experiments were performed in a research channel 15 meters long. This canal is a composite canal with two symmetrical floodplains with a width of 400 mm with a flow rate that can be provided for recirculation in the system of 250 liters per second and a longitudinal slope of 0.0088 000. The depth of the main canal to the edge of the floodplain is equal to 0.18 meters and the width of the main canal is equal to 0.4 meters (Figure 1). In order to roughen the bed and walls of the main canal, sediments with an average diameter of 0.65 mm have been used and at each stage, the walls and bed of floodplains have been roughened by sediments with an average diameter of 0.65, 1.3 and 1.78 (mm). A triangular overflow is used to measure the inflow to the canal, upstream of the canal. In order to measure the flow velocity in experiments with relative depth of 0.15 and 0.25, a micromolina with a diameter of 14 mm and in experiments with relative depth of 0.35, a threedimensional speedometer (ADV) was used. The water level was also taken by depth gauges with an accuracy of 0.1 mm.Result and Diccussion: In the present study, in order to validate the numerical model of water surface profile, average depth velocity distribution and boundary shear stress in the three sections at the beginning, middle and end of the divergence zone) in experiments 0.25211.3NP and 0.2525.7NP and Also, the 0.2522 P test of the prismatic composite section has been evaluated. In Table (1) the values of RMSE and NRMSE indices related to the P.2022P test of the prismatic composite section, and also in Table (2) the values of the RMSE and NRMSE indices in the experiments 11.320.25NP and 0.25. 25.7NP is provided. The results related to the validation of the average depth velocity of the experiments 0.2525.7 NP11.320.25, NP and P.2.022P are shown. In 0.2525.7NP experiment, the amount of NRMSE in elementary, middle and final grades was calculated to be 5.7, 11.8 and 10.3%, respectively, which is in the excellent grade in the elementary grade and good in the middle and final grades. Placed. As can be seen, the RMSE values are calculated as 0.026, 0.037 and 0.026, respectively. In the experiment 11.320.25, NP, the NRMSE values in the primary, middle and final levels were calculated as 7, 11.2 and 15.4%, respectively, which are in the excellent category in the primary level and in the good category in the middle and final levels. Take. As can be seen, the RMSE values are calculated as 0.032, 0.038 and 0.04, respectively. In the 0.252P experiment, the NRMSE value was calculated to be 1.7%, which is in the excellent category. As can be seen, the RMSE value is also calculated to be 0.004. Regarding the mediumdepth velocity distribution, it can be said that the numerical model has an acceptable compliance with the laboratory results and only a small error has been entered in the junction area, which can be considered as a result of the movement of secondary cells towards the corners.Conclusion: in this research The flow pattern in waterways with composite prismatic and nonprismatic sections was investigated using Flow 3D software that is capable of threedimensional flow analysis. For three different relative roughnesses (1, 2 and 2.74) as well as three relative depths (0.15, 0.25 and 0.35) and divergence angles of 5.7 and 11.3 degrees, changes in the longitudinal component of velocity, The average depth velocity distribution, the boundary shear stress distribution as well as the flow rate transmitted by the floodplains were investigated. The results showed that with increasing the width of floodplains along the canal, the amount of velocity decreases. Also, the study of the effect of roughness on the flow pattern showed that in general, with wall roughness, the amount of velocity has decreased in all sections and also the flow pattern at the junction of the main canal and floodplain is more affected by wall roughness. The results also showed that with increasing relative depth or decreasing relative roughness, the velocity gradient between the main channel and floodplains decreases
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved