|
|
مدلسازی انتقال محلول در رودخانه دارای ناحیه های نگهداشت موقت با استفاده از روش شبکه مدارهای الکتریکی معادل
|
|
|
|
|
نویسنده
|
عطائیان آتوسا ,ایوب زاده علی ,نبوی عبدالرضا ,گومز-لوپرا سالوادور انخل
|
منبع
|
هيدروليك - 1398 - دوره : 14 - شماره : 3 - صفحه:33 -48
|
چکیده
|
با توجه به اثرگذاری های زیانبار آلایندههای ورودی به منابع آبی که ناشی از فعالیتهای انسانی میباشد، انجام مطالعات در زمینه پیشبینی غلظت این آلایندهها به منظور انجام اقدامات مقتضی برای کنترل، ضروری به نظر میرسد. بدین منظور مدلهای انتقال جرم متعددی برای پیشبینی غلظت محلول در آبراهههای طبیعی ارائه شدهاند. این مدلها به ندرت دارای حل تحلیلی بوده و عمدتاً با استفاده از روشهای عددی حل میشوند. در این تحقیق روشی تحت عنوان روش شبیهسازی مداری (nsm) که بر پایه آنالوژی موجود بین معادلات دیفرانسیلی حاکم بر پدیدههای هیدرودینامیکی و الکتریکی است، معرفی شده و کاربرد آن در حل مدلهای مذکور مورد بررسی قرار گرفته است. مراحل اجرای این روش شامل استخراج مدل الکتروآنالوژیکال و طراحی مدار الکتریکی معادل و در نهایت شبیهسازی مدل مداری با استفاده از کد مناسب در یک نرمافزار تحلیل مدارهای الکتریکی است. در این مقاله ابتدا nsm با مدلسازی حالتی از معادله انتقال نگهداشت موقت که حل تحلیلی دارد، صحتسنجی شده و سپس دقت و کارایی آن در مقایسه با روش عددی احجام محدود (fvm) در حل مدل نگهداشت موقت تودرتو، برآورد شدهاست. نتایج مدلسازیها حاکی از مطابقت بسیار عالی بین دو روش nsm و fvm با شاخصهای خطای نزدیک به صفر است. حال آنکه پیادهسازی شرایط مرزی در nsm سادهتر بوده و انعطافپذیری بالاتری دارد. به علاوه، زمان محاسباتی مورد نیاز nsm برای مثالهای مورد مطالعه کمتر از زمان محاسباتی مورد نیاز fvm میباشد. بنابراین nsm به عنوان جایگزینی دقیق و کارا برای روشهای عددی در حل معادلات انتقال توام یکبعدی پیشنهاد میشود.
|
کلیدواژه
|
انتقال جرم، نگهداشت موقت، مدارهای الکتریکی معادل، مدل متشابه الکتریکی، روش احجام محدود، رودخانه
|
آدرس
|
دانشگاه تربیت مدرس, گروه مهندسی سازههای آبی, ایران, دانشگاه تربیت مدرس, گروه مهندسی سازه های آبی, ایران, دانشگاه تربیت مدرس, دانشکده مهندسی برق- الکترونیک, ایران, دانشگاه پلی تکنیک کارتاخنا, گروه فیزیک کاربردی, اسپانیا
|
|
|
|
|
|
|
|
|
|
|
Modeling of Solute Transfer in a River with Transient Storage Zones Using a Network of Equivalent Electrical Circuits
|
|
|
Authors
|
Ataieyan Atousa ,Ayyoubzadeh Seyed Ali ,Nabavi Abdolreza ,Gómez-Lopera Salvador Ángel
|
Abstract
|
Human activities everyday release a huge amount of domestic, industrial and agricultural waste into water bodies and continuously change the ecosystem conditions in the world. Considering the harmful effects of these pollutants entering water resources, study about pollution transfer in streams and predicting the pollutant concentration at downstream points seem to be important. For this purpose, the wellknown classical advectiondispersion equation (ADE) was presented as the first attempt for describing mass transfer and energy transfer in physical systems. This equation is useful for channels with relatively prismatic and uniform crosssections. Experimental studies carried out in rivers show that ADE is no longer applicable for natural streams, especially mountain pool and riffle streams because of their irregular crosssections. Afterward, some more accurate models, referred dead zone models or transient storage models, were suggested by several researchers for predicting solute concentration in natural rivers and calibrated using tracer approach. Such models cause more realistic concentrationtime distributions which have lower picks and longer residence time. Solving such models, for which in most cases the analytical solution doesn’t exist, needs numerical methods –methods which usually deal with complexity and is timeconsuming. In this study, we have applied Network Simulation Method (NSM) –a powerful and efficient computational method for simulating systems governed by differential equations based on the electric circuit concepts and the analogy between the governing differential equations of hydrodynamic and electrical phenomena– which according to the previous studies simulates desirably the transport of mass in natural streams, to solve two transient storage models. The method consists of two phases of designing and simulating. In designing phase, the system of differential equations corresponding to the prototype must be discretized spatially over the studied domain and then, for each term of the discretized equations the equivalent electrical devices are chosen. These electrical elements are connected based on the algebraic sign of the terms to satisfy Kirchhoff’s current low. Regarding the mathematical models, in most studies, electric potential and electric current are equivalent to the value of the unknown variable and its flux, respectively. The last step of designing the electroanalogical model is the implementation of initial conditions and boundary conditions of unknown variables using appropriate dependent and/or independent, voltage and/or current sources. Simulating this equivalent electrical network is performed through an appropriate electricalcomputational circuit code, such as PSpice code. PSpice, which is a powerful circuit analysis software, uses the NewtonRaphson iterative algorithm to solve this set of nonlinear equations and performing the transient analysis. In this paper, NSM is firstly verified by simulating a transient storage transport model developed by Bencala and Walters (1983) for unsteady conservative solute transfer in pool and riffle streams. This model includes two equations for solute concentration in the main channel and in the storage zone and involves one storage zone. The analytical solution for this model has been presented in Laplace domain by KazezyılmazAlhan (2008) considering a hypothetical channel with a constant crosssectional area, flow velocity, and dispersion coefficient and for two types of upstream boundary conditions including a continuous injection and a pulsating solute injection. The results of this verification were desirable. Then, the accuracy and efficiency of NSM were compared with Finite Volume Method (FVM) –a widely used numerical method in computational fluid dynamics through simulating an unsteady reactive solute transport using a nested twostorage zone transport model developed by Kerr et al. (2013). This model consists of three equations and involves two storage zones including the surface and hyporheic storage zones interacting together. The results of simulating a hypothetical solute transport problem with this nested model indicate a good match between these two methods with nearzero error indices. The computational time needed for NSM and FVM were 117 seconds and 505 seconds, respectively. So, NSM is much faster. Furthermore, the implementation of boundary conditions in NSM is direct, easier and more flexible. Therefore, NSM is proposed as a precise and efficient alternative for numerical methods in solving onedimensional coupled differential equations of unsteady transport, simultaneously and providing benchmarks without complex mathematical calculations. Because of its analogical based concept, it can be used as a predicting and monitoring tool for transport phenomena instead of using troublesome physical hydraulic models to perform the water quality studies with less time, low expense and higher accuracy. Hence, in critical conditions, including a sudden spill of a highhazardous contaminant in a specified point of the river or increasing the concentration of a chemical element to its maximum level, the monitoring and controlling measures at different parts of the river can be carried out with an acceptable accuracy and speed to improve the water quality.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|