|
|
توسعه سامانه اسکن لیزری سه بعدی آشکارساز جریان فلورسنت در تحقیقات هیدرولیک محیط زیست
|
|
|
|
|
نویسنده
|
عابسی عزیر ,رحمانی فیروزجائی علی ,حمیدی مهدی ,بصام محمد امین ,خدابخشی زهرا
|
منبع
|
هيدروليك - 1398 - دوره : 14 - شماره : 4 - صفحه:69 -81
|
چکیده
|
مدلسازی و مشاهده پدیده های هیدرولیکی در آزمایشگاه را شاید بتوان اولین گام در راستای شناخت رفتار پیچیده فرایندهای طبیعی در مکانیک سیالات دانست. در این زمینه از زمانهای دور، روشهای مختلفی برای اندازهگیری پارامترهای جریان توسعه داده شده است. این روشها عمدتا مبتنی برآشکارسازی و ثبت متغیرهای جریان در شرایط مختلف حرکت میباشند. با توسعه تکنولوژیهای دیجیتال در سالهای اخیر، روشهای متنوعی برای ثبت میدان غلظت و سرعت جریان بدون ایجاد تداخل در محیط توسعه داده شده است. این روشها بیشتر مبتنی بر شبیه سازی جریان در محفظههای شیشهای و شفاف، آشکارسازی جریان با کمک لیزر، فلورسنت و ذرات ریز و ثبت تصاویر با دقت و فرکانس بالا جهت پردازش ثانویه است. در این تحقیق، قابلیتهای سامانه اسکن لیزری سه بعدی که جهت آشکار سازی جریان آغشته به فلورسنت در مطالعات هیدرولیک محیط زیست برای اولین بار در ایران و در دانشگاه صنعتی نوشیروانی بابل توسعه داده شده است، معرفی میگردد. در این سامانه با تابانیدن نور لیزر به جت حاوی فلورسنت و تحریک آن، نسبت به آشکارسازی جریان و ثبت تصاویر آزمایش در طول موج خاصی از نور نارنجی اقدام میگردد. علاوه بر تصویر سازی دو بعدی، این سیستم به نحو خاصی طراحی شده است که امکان ثبت و تصویرسازی سه بعدی آزمایشات را نیز داشته باشد. به کمک این سامانه همچنین با تصویربرداری سریع با نرخ hz 100 از آزمایشات، تحلیل فرکانسی جریانهای آشفته، توسعه طیف انرژی آشفتگی و محاسبه پروفیل شدت و قدرت آشفتگی امکان پذیر میباشد
|
کلیدواژه
|
لیزر، فلورسنت، اسکن سه بعدی، هیدرولیک محیط زیست، آشفتگی
|
آدرس
|
دانشگاه صنعتی نوشیروانی بابل, دانشکده مهندسی عمران, ایران, دانشگاه صنعتی نوشیروانی بابل, دانشکده مهندسی عمران, ایران, دانشگاه صنعتی نوشیروانی بابل, دانشکده مهندسی عمران, ایران, دانشگاه مالک صنعتی اشتر تهران, مجتمع دانشگاهی برق و الکترونیک, ایران, دانشگاه صنعتی شاهرود, ایران
|
|
|
|
|
|
|
|
|
|
|
Three Dimensional Laser Scanning System for Illumination of Fluorescent flow for the Environmental Hydraulic investigations
|
|
|
Authors
|
Abessi Ozeair ,Rahmani Firoozjaee ali ,hamidi mehdi ,bassam mohammad amin ,khodabakshi zahra
|
Abstract
|
Introduction The experimental modeling and laboratory observation is probably the first step in the recognition of the flow complicated behavior in fluid mechanics. Since long time ago, various methods have developed for the measurement of the flow parameters. These methods are based on the illumination and inscription of flow variables in different conditions. Facilities and equipment were temperature and conductivity probes for scalar quantities and Hotwire anemometers and Acoustic Doppler Velocimeters for velocity measurement as a vector variable in each point. Such equipment will cause disturbances in the flow as they are intrusive into the body of the ambient water. The measurements are pointbased and data sampling needs too many probes for each test. Therefore, these probes do not appropriate for data sampling in many applications of the experimental fluid mechanics, especially in small scales. With recent progress in digital technologies, there are various methods have newly developed for the inspection of concentration and velocity field that are nonintrusive. These methods are more based on flow simulation in the transparent chamber, flow illumination with laser and fluorescent or small particles and filming the flow with high accuracy for later visual processing. Methodology In this paper, the capabilities of the threedimensional laser scanning system are exhibited which is developed for first time in Iran at Babol Noshirvani University of Technology (BNUT). It includes a water tank, pomp, the threedimensional laser scanning system, highspeed camera, and data processing apparatus that all located in the darkroom. The optical system consists of two fast scanning mirrors that drive the beam from an argonion laser through the flow in a programmed pattern. The system is controlled by a computer for overall timing control, and image capture. Having added an infinitesimal quantity of a fluorescent dye (Rhodamine 6G, SigmaAldrich, St. Louis, Missouri), the discharged effluent would be fluoresced under the impression of the laser. So due to the function of laser beam, the jet of fluorescent illuminated and recorded in the wavelength of orange light. The orange filter is used to filter out all the scattered lights of the green laser to increase the contrast, and accordingly quality of the images. The apparatus is set in a glassmade tank with length, width, and height, respectively. A chargecoupled device (CCD) camera with the resolution of x pixels was successively capturing the reflected light in the separated illustrations, at approximately 100 frames per second. Each captured illustration had to be modified for laser attenuation and sensor response at each pixel by using clear and dyed water. Having used image processing techniques in a software coded in C#, subsequently, the stream of images for unsteady flow and also timeaveraged results were obtained. So the images are processed by a specially written computer program NITLIF, which is a new version of TFLOOK that previously was developed by Tian and Roberts (2003) at Georgia Institute of Technology. This software through lengthy computational procedures that explained by Tian and Roberts (2003) computes concentration pixelbypixel after a complicated calibration process. The images then turn into a real scale of position, time and concentration for every single frame in Tecplot. The program eventually can timeaveraged the frames and placed them next to each other to form a two dimensional or threedimensional configuration of flow dynamic. The accuracy of the dilution measurements is computed . It should be noticed that this system had been originally incepted by Tian and Roberts (2003) and the one that developed here is the new version of it that upgraded for temporal analysis and spacetime evolution of the concentration field. Results and discussion The system is designed in a way that can record and visualize the threedimensional configuration of the flow. Due to fast recording of the experiments with our highspeed camera with the frequency of 100 Hz, this apparatus is appropriately able to physically analyze the turbulence of the flow, turbulence energy spectrum and intensity and strength profile of the flow. The turbulence is a fluid motion that characterized by chaotic changes in flow variables. Getting 100 Hz data from each point in this system makes us be able for the frequency analysis of flow turbulent properties. Conclusion As a demonstration, the results of our observation for an inclined dense jet are exhibited. Th temporallyaveraged intensity along vertical cut and energy spectrum are plotted at jet maximum height together with the instantaneous and timeaveraged 2D and 3D configurations of the flow. Turbulence kinetic energy spectrums are well fitted with the power law of Kolmogorov theory for the inertial subrange. The timeaveraged intensity distribution shows that for the location of maximum high, eddies are always present in centerline which shows the dominance of jetlike behavior in this point.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|