>
Fa   |   Ar   |   En
   Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator  
   
نویسنده یعقوبی حمید ,رجبی مشهدی حبیب ,انصاری کوروش
منبع مهندسي برق و الكترونيك ايران - 1392 - دوره : 10 - شماره : 2 - صفحه:23 -36
چکیده    This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. in the proposed scheme, flux linkage analysis is used to reach a decision. probabilistic neural network (pnn) and discrete wavelet transform (dwt) are used in design of fault diagnosis system. pnn as main part of this fault diagnosis system and dwt are combined effectively to construct the classifier. the pnn is trained by features extracted from the magnetic flux linkage data through the discrete meyer wavelet transform. magnetic flux linkage data is provided by a fem (finite element method) simulation of a real synchronous generator and estimated by generalized regression neural network (grnn). then pnn is tested with experimental data, derived from a 4-pole, 380v, 1500 rpm, 50 hz, 50 kva, 3-phase salient-pole synchronous generator.
کلیدواژه Radial basis neural network ,Synchronous generator ,Fault diagnosis ,Linkage flux analysis
آدرس دانشگاه سمنان, Assistant Professor, Faculty of Electrical Engineering, Semnan University, ایران, دانشگاه فردوسی مشهد, Professor, Department of Electrical Engineering, Ferdowsi University of Mashhad, ایران, دانشگاه فردوسی مشهد, Assistant Professor, Department of Electrical Engineering, Ferdowsi University of Mashhad, ایران
پست الکترونیکی ansari@um.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved