>
Fa   |   Ar   |   En
   یک چارچوب جدید برای پیش بینی نمره‌ی زیبایی بینی مبتنی بر الگوریتم ‌های یادگیری ماشین  
   
نویسنده عاشوری مریم ,آقایی ‌زاده ظروفی رضا ,صادقی محمد
منبع مهندسي پزشكي زيستي - 1402 - دوره : 17 - شماره : 2 - صفحه:137 -151
چکیده    در حال حاضر رشد سریع صنعت زیبایی در کنار توسعه‌ی مدل های هوشمند مبتنی بر الگوریتم های یادگیری ماشین منجر به افزایش تحقیقات گسترده در این حوزه شده است. جراحی زیبایی بینی یکی از رایج ترین و چالش برانگیزترین جراحی های زیبایی چهره است زیرا بینی برجسته ترین عنصر چهره بوده که تاثیر زیادی بر جذابیت آن دارد. هدف این مقاله ارائه‌ی یک چارچوب مبتنی بر یادگیری ماشین برای پیش‌بینی نمره‌ی زیبایی بینی است. در این مقاله تعدادی از پارامتر های هندسی بینی در ارتباط با کل چهره به عنوان ورودی و نظر انسان به عنوان خروجی به الگوریتم های رگرسیونی متداول یادگیری ماشین داده شده است. سپس یک مطالعه‌ی فرسایشی جهت بررسی تاثیر شکل چهره و رنگ و بافت پوست بر زیبایی بینی انجام شده است. طبقه بند پرسپترون چندلایه، خوشه‌بندی k-means و ماتریس هم‌رخدادی سطح خاکستری برای استخراج شکل چهره و رنگ و بافت پوست مورد استفاده قرار گرفته است. نتایج نشان داده که مدل مبتنی بر پارامترهای هندسی، همبستگی متوسطی با نظر انسان داشته و با افزودن هر زیرمجموعه از مجموعه‌ی ویژگی های شکل چهره و رنگ و بافت پوست همبستگی مدل حاصل شده، تا رسیدن به درجه‌ی بالای همبستگی افزایش یافته است. هم‌چنین نتایج بیان‌گر آن است که الگوریتم جنگل تصادفی در بین سایر الگوریتم ها بهترین عمل‌کرد را بر اساس معیارهای ارزیابی میانگین مطلق خطا، ریشه‌ی میانگین مربعات خطا و همبستگی پیرسون دارد. نتایج این مطالعه نشان داده است که چارچوب ارائه شده می تواند به تعیین میزان زیبایی بینی در چهره‌ی افراد کمک نماید.
کلیدواژه زیبایی بینی، یادگیری ماشین، پارامترهای هندسی، شکل چهره، رنگ پوست، بافت پوست
آدرس دانشگاه تهران, دانشکده‌ی مهندسی برق و کامپیوتر، دانشکده‌ی فنی, ایران, دانشگاه تهران, دانشکده‌ی مهندسی برق و کامپیوتر، دانشکده‌ی فنی, ایران, دانشگاه علوم پزشکی تهران, مجتمع بیمارستانی امام خمینی, ایران
پست الکترونیکی sadeghih@tums.ac.ir
 
   a novel framework for predicting the score of nasal aesthetic based on machine learning algorithms  
   
Authors ashoori maryam ,a. zoroofi reza ,sadeghi mohammad
Abstract    currently, the rapid growth of the beauty industry, along with the development of intelligent models based on machine learning algorithms, has led to an increase in extensive research in this field. rhinoplasty is one of the most common and demanding facial cosmetic surgeries because the nose is the most prominence element of the face, which has a great impact on its attractiveness. the purpose of this article is to present a machine learning-based framework for predicting nasal aesthetic evaluation. in this article, a  set of geometric parameters of the nose relative to the entire face are given as input and human rating as output to the popular machine learning regression algorithms. an ablation study was then carried out to examine the influence of facial shape, skin color, and texture on the beauty of the nose. multilayer perceptron classification, k-means clustering, and grey level co-occurrence matrix were used to extract facial shape, skin color, and texture. the results show that the model based on geometric parameters has a moderate correlation with human rating, and by adding each subset of the features of face shape, color, and skin texture, the correlation of the obtained model increases until a high degree of correlation is achieved. the results also show that the random forest algorithm has the best performance among other algorithms based on the evaluation criteria of absolute mean error, root mean square error, and pearson correlation. the results of this study show that the proposed framework can be helpful in determining the beauty of the nose.
Keywords nasal aesthetic ,machine learning ,geometric parameters ,face shape ,skin color ,skin texture
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved