|
|
ترکیب الگوریتم خوشه بندی fuzzy c-means با شبکه عصبی پرسپترون چند لایه برای افزایش دقت تخمین غلظت عناصر ژئوشیمیایی، مثال موردی – محدوده شرقی کانسار مس پورفیری سوناجیل
|
|
|
|
|
نویسنده
|
جهانگیری محرم ,قوامی ریابی رضا ,تخمچی بهزاد
|
منبع
|
زمين شناسي ايران - 1397 - دوره : 12 - شماره : 48
|
چکیده
|
روش های شناسایی الگو توانایی کشف روابط پنهان موجود در بین داده های اکتشافی را دارند و با بهره گیری از این روش ها، الگوی پراکندگی ژئوشیمیایی حاکم بر عناصر در محدوده مورد مطالعه قابل شناسایی و تعمیم است. یکی از روش های شناسایی الگو، شبکه عصبی چند لایه است که در تخمین غلظت عناصر ژئوشیمیایی در مطالعات معدنی استفاده می شود و دقت قابل قبولی ارائه می نماید. در این مطالعه، روش شبکه عصبی چند لایه بهعنوان تخمینگر انتخاب شده و با 1755 نمونه سنگی آنالیز شده با روش icp، طراحی تخمینگر انجام پذیرفته است. در تحلیل ها برای بالا بردن دقت تخمین شبکه عصبی از الگوریتم خوشه بندی fcm استفاده شده است. پس از شناسایی تعداد خوشه بهینه موجود در داده های ژئوشیمیایی، اقدام به خوشه بندی شده و مجموعه داده برای طراحی تخمینگر ها از داده های خوشه بندی شده انتخاب شد. نتایج بهدستآمده نشان داد که استفاده از داده های خوشه بندی شده، دقت تخمین را 13 درصد افزایش داده و میانگین دقت تخمینگرهای عناصر ژئوشیمیایی که در حالت استفاده از کل داده ها برابر 75 درصد بود به 88 درصد افزایش یافته است. عناصری با دقت های پایین در حالت استفاده از کل داده ها، در حالت استفاده از داده های خوشه بندی شده افزایش قابل ملاحظه ای از خود نشان داده و خطای تخمین (mse) در حالت استفاده از داده های خوشه بندی به میزان قابل توجهی کاهش پیدا کرده است و میانگین خطا از مقدار 079/0 با کاهشی 3 برابری به 025/0 رسیده است.
|
کلیدواژه
|
تخمین غلظت عناصر ژئوشیمیایی ,الگوریتم خوشه بندی fcm ,شبکه عصبی چند لایه، بهبود دقت تخمین
|
آدرس
|
دانشگاه صنعتی شاهرود, ایران, دانشگاه صنعتی شاهرود, ایران, دانشگاه صنعتی شاهرود, دانشکده مهندسی معدن، نفت، ژئوفیزیک, ایران
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|