|
|
شناسایی و ارزیابی عوامل خطر در زنجیره تامین صنایع دارویی با استفاده از هوش مصنوعی
|
|
|
|
|
نویسنده
|
پنجه کوبی راحله ,فیروزی جهانتیغ فرزاد
|
منبع
|
بيمارستان - 1400 - دوره : 20 - شماره : 4 - صفحه:42 -50
|
چکیده
|
زمینه و هدف: با بالا رفتن دشواریها، سطح عدم اطمینان و خطر موجود در زنجیرهتامین افزایش مییابد. دارو یک محصول راهبردی است و به صورت مستقیم با سلامتی جامعه ارتباط دارد. این پژوهش با هدف ارزیابی عوامل خطرزنجیرهتامین دارویی با روشهای هوش مصنوعی انجام شده است.مواد و روشها: با مرور متون و مصاحبه با 6 نفر از کارشناسان خبره که دارای مدرک تحصیلی کارشناسیارشد و دکتری تخصصی بودند و تجربهای بین 7 تا 15 سال در زمینه خطر و زنجیرهتامین دارو داشتند، عوامل خطر شناسایی شدند. در نهایت با استفاده از شبکههای عصبی پرسپترون چندلایه و ماشینهای بردار پشتیبان با توابع کرنلخطی، چندجملهای و پایهشعاعی در دو کلاس کمخطر و پرخطر در نرمافزار پایتون طبقهبندی گردیدند. نتایج: 22عامل در 5 دسته دارایی، شبکه حمل و نقل، دولت و بازار، راهبردی و تهیه و تامینکننده شناسایی و با استفاده از شبکههای عصبی طبقهبندی شدند. تغییرات بهره و تورم، تغییرات نرخارز، عدم انعطافپذیری در تولید و اختلال در خدمات مشتری به ترتیب بیشترین اهمیت را در خطرهای زنجیره تامین دارو دارند. نتایج معیارهای ارزیابی نشان داد، مدل پرسپترون چندلایه عملکرد بهتری نسبت به ماشینهای بردار پشتیبان با توابع کرنلخطی، چندجملهای و پایهشعاعی داشته است.نتیجهگیری: نتایج نشان داد که شبکههای عصبی مصنوعی قادر به طبقهبندی عوامل خطر زنجیرهتامین دارو با دقت قابل قبولی هستند. در نتیجه طبقهبندی عوامل خطر با دقت 97.07% نشاندهنده توانایی بالای شبکه پرسپترون چندلایه در ارزیابی خطر زنجیره تامین دارو است.
|
کلیدواژه
|
خطر، مدیریت خطر زنجیره تامین، شبکه عصبی، مدیریت زنجیره تامین دارو
|
آدرس
|
دانشگاه سیستان و بلوچستان, گروه مهندسی صنایع, ایران, دانشگاه سیستان و بلوچستان, گروه مهندسی صنایع, ایران
|
پست الکترونیکی
|
firouzi@eng.usb.ac.ir
|
|
|
|
|
|
|
|
|
Identification and assessment of risk factors in the supply chain of the pharmaceutical industry using artificial intelligence.
|
|
|
Authors
|
Panjekoobi Rahele ,Firouzi Jahantigh Farzad
|
Abstract
|
Background and Aim: As difficulties increase, the level of uncertainty and risk in the supply chain increases. Medicine is a strategic product and is directly related to community health. The aim of this study is to evaluate the risk factors of pharmaceutical supply chain with artificial intelligence methods.Materials and Methods: By reviewing the texts and interviewed 6 adept experts who had a Master rsquo;s degree and Ph.D. and had experience between 7 and 15 years in the field of risk and pharmaceutical supply chain, risk factors were identified. Finally, using multilayered perceptron neural networks and support vector machines with polynomial linear kernel functions and radial base in two lowrisk and highrisk classes were classified in Python software.Results: 22 factors were identified and classified using neural networks in 5 categories: assets, network and transportation, government and market, strategy and supplier. Shift in interest and inflation, Changes in exchange rates, Inflexibility in production and disruption of customer service are the most important risks in the pharmaceutical supply chain, respectively. The results of evaluation criteria showed that the multilayer perceptron model had better performance than the support vector machines with linear, polynomial and radial basis functions.Conclusion: The results showed that artificial neural networks are able to classify pharmaceutical supply chain risk factors with acceptable accuracy. As a result, classification of risk factors with an accuracy of 97/07% indicates the high ability of multilayer perceptron network in risk assessment of pharmaceutical supply chain.
|
Keywords
|
risk ,supply chain risk management ,neural network ,pharmaceutical supply chain management.
|
|
|
|
|
|
|
|
|
|
|