>
Fa   |   Ar   |   En
   بهینه‌سازی میزان کاربرد آب آبیاری، پلیمر سوپرجاذب رطوبت و کود دامی با استفاده از روش سطح-پاسخ (Rsm): مطالعه روی کنجد (Sesamum Indicum L.) در یک نظام زراعی اکولوژیک  
   
نویسنده جهان محسن ,جوادی مریم
منبع پژوهشهاي زراعي ايران - 1401 - دوره : 20 - شماره : 3 - صفحه:255 -274
چکیده    باتوجه به تغییرات اقلیمی، افزایش و یا حفظ سطح کنونی تولید در شرایط بارندگی کم در مناطق نیمه‌خشک به‌عنوان چالشی مهم مطرح است و نیازمند تجدید نظر در روش‌های تولید و به‌ویژه نهاده‌های مصرفی است. در همین راستا و به‌منظور تعیین بهترین سطح آب آبیاری و نهاده‌های دوستدار محیط‌زیست شامل سوپرجاذب رطوبت و کود دامی در زراعت کنجد در یک ناحیه خشک و نیمه‌خشک، آزمایشی در قالب باکسبنکن طراحی و طی سال زراعی 991398 در مزرعه دانشگاه فردوسی مشهد به اجرا درآمد. تیمارهای آزمایشی با توجه به سطوح بالا و پایین آب آبیاری (3000 و 1500 متر مکعب در هکتار)، سوپرجاذب رطوبت (160 و صفر کیلوگرم در هکتار) و کود گاوی (30 و صفر تن در هکتار) طراحی شدند، به طوری که نقطه مرکزی در هر تیمار سه مرتبه تکرار شد و کلاً 15 ترکیب تیماری به‌دست آمد. عملکرد دانه و ماده خشک، شاخص سطح برگ، وزن خشک برگ، تعداد کپسول در بوته، تعداد دانه در کپسول، وزن هزار دانه، درصد روغن دانه و کارآیی مصرف آب، به‌عنوان متغیرهای وابسته مورد اندازه‌گیری و محاسبه قرار گرفتند. سپس با استفاده از مدل رگرسیونی گام به گام و برازش تابع درجه دو کامل به داده‌ها، سطح پاسخ متغیرهای وابسته تحت تاثیر تیمارهای آزمایشی محاسبه و رسم شد. اثر جزء خطی کود دامی از مدل رگرسیونی بر عملکرد زیستی، اثر جزء خطی آبیاری و کود دامی بر تعداد کپسول در دانه و همچنین اثر جزء خطی سوپرجاذب بر درصد روغن دانه معنی‌دار بود. اثر جزء درجه دو کود دامی بر وزن هزار دانه، در سطح احتمال یک درصد معنی‌دار بود که حاکی از اثربخشی کود دامی بر اجزای عملکرد و در نهایت عملکرد دانه است. بیشترین مقدار بهره‌وری آب آبیاری، برابر با 2/2 کیلوگرم دانه به ازای متر مکعب آب، برای سطح آبیاری2250 متر معکب حاصل شد. بهینه سازی با هدف تولید بیشترین عملکرد دانه انجام شد، که در این حالت بیشترین عملکرد دانه (4541 کیلوگرم در هکتار) با سه هزار مترمکعب آب آبیاری در هکتار، بدون سوپرجاذب و با 30 تن در هکتار کود دامی حاصل شد. در گام بعد، به منظور بررسی نقش سوپرجاذب در صرفه‌جویی آب، بهینه‌سازی با نصف آب آبیاری، 100 کیلوگرم در هکتار سوپرجاذب و بدون کاربرد کود دامی انجام شد که منجر به تولید 3380 کیلوگرم در هکتار دانه شد. در حالت سوم، نتایج بهینه‌سازی که برای آب آبیاری در دامنه 1500 تا 2250 مترمکب در هکتار (شرایط کم آبیاری)، بدون کاربرد سوپرجاذب و مقدار کود دامی از صفر تا 30 تن در هکتار انجام گرفت، نشان داد که با استفاده از 2250 متر مکعب در هکتار آب و 30 تن در هکتار کود دامی، می‌توان به عملکرد دانه‌ای معادل با 4186 کیلوگرم در هکتار دست یافت. به‌طور کلی، نتایج حاصل ازاین آزمایش نشان داد که با استفاده از نهاده‌های دوستدار محیط‌زیست، می‌توان نسبت به زراعت باثبات کنجد اقدام نمود و به عملکردی با ثبات و فراتر از عملکرد سیستم‌های رایج پرنهاده، دست یافت.
کلیدواژه ثبات تولید، خشکی، روغن دانه، صرفه اقتصادی، نهاده بوم سازگار
آدرس دانشگاه فردوسی مشهد, دانشکده کشاورزی, گروه اگروتکنولوژی, ایران, دانشگاه فردوسی مشهد, دانشکده کشاورزی, گروه اگروتکنولوژی, ایران
پست الکترونیکی javadimaryam101@yahoo.com
 
   Optimization of Application Levels of Irrigation Water, Superabsorbent Polymer and Cattle Manure Using Response-Surface Methodology: A Study on Sesame (Sesamum indicum L.) in an Ecological Cropping System  
   
Authors Jahan M ,Javadi M
Abstract    IntroductionDue to climate change, increasing and maintaining the current level of production in low rainfall conditions in semiarid regions is an important challenge. On the other hand, agriculture in these areas is often of low productivity due to low water use efficiency. Considering the fact that Iran is one of the challenging arid and semiarid regions of the world, so it faces the problem of water shortage and precipitation. Therefore, in such circumstances, finding ecofriendly solutions to increase water use efficiency to achieve sustainable agricultural goals seems necessary. In recent years, many efforts have been made in this field, in this regard, limited irrigation and the use of superabsorbent into the soil as two practical strategies for water conservation and optimal use have been considered.Optimizing the effective factors in production and management of water use in the farm could saves limited water resources and protects the soil, moreover, can increase yields. Extensive research has been done on the effect of different levels of irrigation, superabsorbent and fertilizer on different crops, but in the field of simultaneous optimization of these factors using statistical techniques, there is little or no information, so this study aims to optimize consumption of irrigation water, superabsorbent and cattle manure were designed and conducted in lowinput sesame cultivation using surfaceresponse methodology and BoxBehnken design.Materials and MethodsThe experiment was conducted as a BoxBehnken design. Experimental factors including a combination of different levels of irrigation water, superabsorbent and cattle manure. The total number of treatments required for this experiment was 15 treatments including 12 factorial combinations and 3 replications of the central point. The BoxBehnken design is essentially applicable and analyzed with one replication, but to fit the level of response equations, it is necessary to repeat the central points that represent the average level of high and low levels of each of the experimental factors. Using the BoxBehnken design, it is possible that most information from the minimum executive operation would be obtained through the distribution of trial points in the treatments. The values of these factors were determined by using software due to low and high levels of irrigation water (1500 and 3000 m3 ha1), superabsorbent (0 and 160 kg ha1) and cattle manure (0 and 30 ton ha1) using software.In the BoxBehnken method, the response variable (y) is estimated by Equation 1.Where y is a dependent variable and according to sesame seed yield, biological yield, leaf area index, leaf dry weight, number of pods per plant, number of seeds per pods, 1000seeds weight, relative water content and seed oil percentage were calculated separately; Xi is the independent variable, XiXj i the interaction of the independent variable i and the independent variable j, Xi2 the second power of the independent variable i and βi to βii are the coefficients of the equation. After obtaining the simulation results, using calculations and statistical methods, a quadratic polynomial is obtained which expresses the response rate (yield) as a function of input variables. Finally, after optimizing the obtained relationship and eliminating ineffective sentences, using statistical tests and criteria such as F test value, Lack of Fit test, Pvalue and R2 (coefficient of determination), the final relationship for predicting yield and other response variables is calculated for the present study (Equation 2).The obtained relationship is valid only within the limits defined for the input parameters and has no predictive power outside this range. In this equation, y: is a dependent variable already defined for Eq. 4. X1 is the independent variable of irrigation water, X2 is the superabsorbent, and X3 is the independent variable of manure, a1 to a9 are the equation coefficients. Optimal amounts of irrigation water, superabsorbent and manure were determined according to the possibility of maximum seed yield. Finally, the estimated values were compared with the observed data and the validity of the regression models was evaluated using the root mean square error (RMSE).Results and DiscussionIn general, considering the significant effect of linear component of manure from regression model and biological yield as well as linear effect of irrigation and manure on the number of seed per pod, it can be concluded that the use of manure ultimately increased seed yield. Regarding the quality yield of sesame (seed oil percentage), the significance of the linear component of the superabsorbent effect can guarantee the quality yield of sesame. The high significant (p≤0.01) effect of the second order (full quadratic model) component of manure on 1000seeds weight also indicates the effectiveness of manure on yield components and finally seed yield. Optimization was performed with three scenarios. First, considering all three factors, irrigation, superabsorbent and manure were done. Optimization was done to produce the highest seed yield, in which case the highest seed yield (4541 kg ha1) was obtained with 3,000 m3 ha1 of irrigation water, without superabsorbent and with 30 t ha1 of manure. In the next step, to investigate the role of superabsorbent in water saving, optimization was performed with half irrigation water, 100 kg ha1 of superabsorbent and with no application of manure, which resulted in the production of 3380 kg ha1 of seed. In the third case, the results of optimization for irrigation water in the range of 1500 to 2250 m3 ha1 (limited irrigation), with no use of superabsorbent and the amount of manure from zero to 30 t ha1, showed that applying 2250 m3 ha1 of water and 30 t ha1 of manure could be resulted in a seed yield of 4186 kg ha1. The highest amount of irrigation water productivity, equal to 2.2 kg seed per m3 of water, was obtained from 2250 m3 of irrigation water. Third scenario compared with the first scenario shows a reduction of 750 m3 in the volume of irrigation water that resulted in only an 8% reduction in seed yield (4186 vs. 4541 kg of seed), therefore, the third scenario potentially could be chosen by the farmers. Depends on the level of availability of water resources, the balance of economic value of water against seed yield, and other environmental and management options, if the application of 30 t ha1 of manure to achieve the stable seed yield is not economical for the farmer compared with the application of 100 kg ha1 of superabsorbent, we can recommend the second scenario (1500 m3 of water plus 100 kg of superabsorbent, with no manure) that will result in the seed yield by 3380 kg ha1. The difference in seed yield in this scenario compared with the third scenario is 806 kg of seed, so the farmer must take into account all economic and managerial conditions to select the appropriate scenario. In general, the results of this study showed that using ecofriendly inputs, it is possible to produce stable sesame in an arid and semiarid region and achieve a yield beyond of the conventional highinput systems.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved