|
|
تعیین روش بهینه طبقه بندی و نقشه سازی کاربری/ پوشش اراضی با مقایسه الگوریتم های شبکه عصبی مصنوعی وماشین بردار پشتیبان با استفاده از داده های ماهواره ای (مطالعه موردی: تالاب بین المللی هامون)
|
|
|
|
|
نویسنده
|
احسانی امیرهوشنگ ,شاکریاری مجتبی
|
منبع
|
علوم و تكنولوژي محيط زيست - 1397 - دوره : 20 - شماره : 4 - صفحه:193 -208
|
چکیده
|
زمینه و هدف: طبقه بندی تصاویر یکی از روش های مهم درتفسیرتصاویر ماهواره ای است که کاربرد زیادی در بررسی تغییرات زمین دارد. در این میان داده های ماهواره ای به دلیل ارایه اطلاعات به روز، ارزان بودن و تنوع اشکال بهترین وسیله برای آشکارسازی و ارزیابی تغییرات شناخته شده است. از طرفی دیگر در سال های اخیر روش های شبکه های عصبی مصنوعی به طور وسیع و گسترده جهت طبقه بندی داده های ماهواره ای استفاده می شود. هدف از این پژوهش مقایسه سه روش مختلف جهت طبقه بندی پوشش اراضی با استفاده از تصویر سنجده oli سال 2014 طی یک دوره 26 ساله می باشد. روش بررسی: در این مقاله تصویر سنجنده oli (1393) از لحاظ هندسی و اتمسفری در نرم افزار envi تصحیح شد. سپس جهت طبقه بندی تصویر به سه روش شبکه های عصبی مصنوعی آرتمپ فازی، شبکه عصبی مصنوعی پرسپترون چند لایه و روش ماشین بردار پشتیبان با استفاده از نرم افزار idris selva، نقشه پوشش اراضی به پنج کلاس آب، پوشش گیاهی، نیزار، اراضی بایر و اراضی شور طبقه بندی گردید. در نهایت به منظور ارزیابی صحت با استفاده از صحت کاربر، صحت تولید کننده، صحت کلی، ضریب کاپا و ماتریس خطا، نقشه ایجاد شده با نقشه واقعیت زمینی ایجاد شده توسط gps و تصاویر گوگل ارث و بازدیدهای صحرایی مورد مقایسه قرار گرفت. بحث و نتیجهگیری: نتایج نشان دادند که روش آرتمپ فازی بیش ترین میزان دقت را با صحت کل 94.68 و ضریب کاپای91/. نسبت به دو روش شبکه عصبی مصنوعی پرسپترون چند لایه با صحت کل 92.99 و ضریب کاپای 89/. و ماشین بردار پشتیبان با صحت کل 90.93و ضریب کاپای 85/. در طبقه بندی داده های ماهواره ای دارد.
|
کلیدواژه
|
شبکه عصبی مصنوعی، طبقه بندی پوشش اراضی، تالاب بین المللی هامون، داده های ماهواره ای
|
آدرس
|
دانشگاه تهران، پردیس دانشکدههای فنی, دانشکدههای فنی, ایران, دانشگاه تهران, دانشکده محیط زیست, ایران
|
|
|
|
|
|
|
|
|
|
|
Determining the optimal method for classification and mapping of land use/land cover through comparison of artificial neural network and support vector machine algorithms using satellite data (Case study: International Hamoun wetland)
|
|
|
Authors
|
ehsani amir houshang ,Shakeryari Mojtaba
|
Abstract
|
Background and Objective: Images classification is one of the important techniques for interpretation of satellite images that is widely used in survey of earth changes. In the meantime, satellite data has been recognized as the best tool for detection and evaluation of changes due to its update information, low costs and variety of forms. Therefore, land use/land cover map is one of the most important information required by the environmental managers and planners. On the other hand, in recent years, artificial neural network method has been used widely for the classification of satellite data. The aim of this study is to compare three different methods for land cover classification using 2014 OLI image over a 26year period. Method: In this study, digital data of OLI (2014) sensor was used in order to optimize image classification method. Initially, the image was corrected in terms of geometry and radiometry in the ENVI software. Then IDRISI software was used for image classification using three different methods: fuzzy artmap, multilayer perceptron artificial neural networks and support vector machine. Finally, land cover maps were classified into five categories: water, vegetation, canebrake, barren lands and saline lands. To evaluate accuracy with the help of user accuracy, producer accuracy, overall accuracy, kappa coefficient and error matrix, the created map was compared with the ground reality map created by GPS, Google Earth images and field observations. Discussion and Conclusion: The results of image accuracy evaluation showed that among the applied methods the fuzzy artmap algorithm had the highest accuracy in classification of satellite data with an overall accuracy of 94.68 and kappa coefficient of 0.91 compared to both multilayer perceptron artificial algorithm with an overall accuracy of 92.99 and kappa coefficient of 0.89 and support vector machine with an overall accuracy of 90.93 and kappa coefficient of 0.85. This study showed that classification of fuzzy artmap artificial neural network algorithm has a high capability to create the land cover map with high accuracy.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|